Hacking a Segway

The Segway has a mobile app. It is hackable: While analyzing the communication between the app and the Segway scooter itself, Kilbride noticed that a user PIN number meant to protect the Bluetooth communication from unauthorized access wasn’t being used for authentication at every level of the system. As a result, Kilbride could send arbitrary commands to the scooter without…

The Segway has a mobile app. It is hackable:

While analyzing the communication between the app and the Segway scooter itself, Kilbride noticed that a user PIN number meant to protect the Bluetooth communication from unauthorized access wasn't being used for authentication at every level of the system. As a result, Kilbride could send arbitrary commands to the scooter without needing the user-chosen PIN.

He also discovered that the hoverboard's software update platform didn't have a mechanism in place to confirm that firmware updates sent to the device were really from Segway (often called an "integrity check"). This meant that in addition to sending the scooter commands, an attacker could easily trick the device into installing a malicious firmware update that could override its fundamental programming. In this way an attacker would be able to nullify built-in safety mechanisms that prevented the app from remote-controlling or shutting off the vehicle while someone was on it.

"The app allows you to do things like change LED colors, it allows you to remote-control the hoverboard and also apply firmware updates, which is the interesting part," Kilbride says. "Under the right circumstances, if somebody applies a malicious firmware update, any attacker who knows the right assembly language could then leverage this to basically do as they wish with the hoverboard."

from https://www.schneier.com/blog/

Ethereum Hacks

The press is reporting a $32M theft of the cryptocurrency Ethereum. Like all such thefts, they’re not a result of a cryptographic failure in the currencies, but instead a software vulnerability in the software surrounding the currency — in this case, digital wallets. This is the second Ethereum hack this week. The first tricked people in sending their Ethereum to…

The press is reporting a $32M theft of the cryptocurrency Ethereum. Like all such thefts, they're not a result of a cryptographic failure in the currencies, but instead a software vulnerability in the software surrounding the currency -- in this case, digital wallets.

This is the second Ethereum hack this week. The first tricked people in sending their Ethereum to another address.

This is my concern about digital cash. The cryptography can be bulletproof, but the computer security will always be an issue.

from https://www.schneier.com/blog/

Commentary on US Election Security

Good commentaries from Ed Felten and Matt Blaze. Both make a point that I have also been saying: hacks can undermine the legitimacy of an election, even if there is no actual voter or vote manipulation. Felten: The second lesson is that we should be paying more attention to attacks that aim to undermine the legitimacy of an election rather…

Good commentaries from Ed Felten and Matt Blaze.

Both make a point that I have also been saying: hacks can undermine the legitimacy of an election, even if there is no actual voter or vote manipulation.

Felten:

The second lesson is that we should be paying more attention to attacks that aim to undermine the legitimacy of an election rather than changing the election's result. Election-stealing attacks have gotten most of the attention up to now -- ­and we are still vulnerable to them in some places -- ­but it appears that external threat actors may be more interested in attacking legitimacy.

Attacks on legitimacy could take several forms. An attacker could disrupt the operation of the election, for example, by corrupting voter registration databases so there is uncertainty about whether the correct people were allowed to vote. They could interfere with post-election tallying processes, so that incorrect results were reported­ an attack that might have the intended effect even if the results were eventually corrected. Or the attacker might fabricate evidence of an attack, and release the false evidence after the election.

Legitimacy attacks could be easier to carry out than election-stealing attacks, as well. For one thing, a legitimacy attacker will typically want the attack to be discovered, although they might want to avoid having the culprit identified. By contrast, an election-stealing attack must avoid detection in order to succeed. (If detected, it might function as a legitimacy attack.)

Blaze:

A hostile state actor who can compromise a handful of county networks might not even need to alter any actual votes to create considerable uncertainty about an election's legitimacy. It may be sufficient to simply plant some suspicious software on back end networks, create some suspicious audit files, or add some obviously bogus names to to the voter rolls. If the preferred candidate wins, they can quietly do nothing (or, ideally, restore the compromised networks to their original states). If the "wrong" candidate wins, however, they could covertly reveal evidence that county election systems had been compromised, creating public doubt about whether the election had been "rigged". This could easily impair the ability of the true winner to effectively govern, at least for a while.

In other words, a hostile state actor interested in disruption may actually have an easier task than someone who wants to undetectably steal even a small local office. And a simple phishing and trojan horse email campaign like the one in the NSA report is potentially all that would be needed to carry this out.

Me:

Democratic elections serve two purposes. The first is to elect the winner. But the second is to convince the loser. After the votes are all counted, everyone needs to trust that the election was fair and the results accurate. Attacks against our election system, even if they are ultimately ineffective, undermine that trust and ­ by extension ­ our democracy.

And, finally, a report from the Brennan Center for Justice on how to secure elections.

from https://www.schneier.com/blog/

Separating the Paranoid from the Hacked

Sad story of someone whose computer became owned by a griefer: The trouble began last year when he noticed strange things happening: files went missing from his computer; his Facebook picture was changed; and texts from his daughter didn’t reach him or arrived changed. "Nobody believed me," says Gary. "My wife and my brother thought I had lost my mind….

Sad story of someone whose computer became owned by a griefer:

The trouble began last year when he noticed strange things happening: files went missing from his computer; his Facebook picture was changed; and texts from his daughter didn't reach him or arrived changed.

"Nobody believed me," says Gary. "My wife and my brother thought I had lost my mind. They scheduled an appointment with a psychiatrist for me."

But he built up a body of evidence and called in a professional cybersecurity firm. It found that his email addresses had been compromised, his phone records hacked and altered, and an entire virtual internet interface created.

"All my communications were going through a man-in-the-middle unauthorised server," he explains.

It's the "psychiatrist" quote that got me. I regularly get e-mails from people explaining in graphic detail how their whole lives have been hacked. Most of them are just paranoid. But a few of them are probably legitimate. And I have no way of telling them apart.

This problem isn't going away. As computers permeate even more aspects of our lives, it's going to get even more debilitating. And we don't have any way, other than hiring a "professional cybersecurity firm," of telling the paranoids from the victims.

from https://www.schneier.com/blog/

New Technique to Hijack Social Media Accounts

Access Now has documented it being used against a Twitter user, but it also works against other social media accounts: With the Doubleswitch attack, a hijacker takes control of a victim’s account through one of several attack vectors. People who have not enabled an app-based form of multifactor authentication for their accounts are especially vulnerable. For instance, an attacker could…

Access Now has documented it being used against a Twitter user, but it also works against other social media accounts:

With the Doubleswitch attack, a hijacker takes control of a victim's account through one of several attack vectors. People who have not enabled an app-based form of multifactor authentication for their accounts are especially vulnerable. For instance, an attacker could trick you into revealing your password through phishing. If you don't have multifactor authentication, you lack a secondary line of defense. Once in control, the hijacker can then send messages and also subtly change your account information, including your username. The original username for your account is now available, allowing the hijacker to register for an account using that original username, while providing different login credentials.

Three news stories.

from https://www.schneier.com/blog/

NSA Links WannaCry to North Korea

There’s evidence: Though the assessment is not conclusive, the preponderance of the evidence points to Pyongyang. It includes the range of computer Internet protocol addresses in China historically used by the RGB, and the assessment is consistent with intelligence gathered recently by other Western spy agencies. It states that the hackers behind WannaCry are also called "the Lazarus Group," a…

There's evidence:

Though the assessment is not conclusive, the preponderance of the evidence points to Pyongyang. It includes the range of computer Internet protocol addresses in China historically used by the RGB, and the assessment is consistent with intelligence gathered recently by other Western spy agencies. It states that the hackers behind WannaCry are also called "the Lazarus Group," a name used by private-sector researchers.

One of the agencies reported that a prototype of WannaCry ransomware was found this spring in a non-Western bank. That data point was a "building block" for the North Korea assessment, the individual said.

Honestly, I don't know what to think. I am skeptical, but I am willing to be convinced. (Here's the grugq, also trying to figure it out.) What I would like to see is the NSA evidence in more detail than they're probably comfortable releasing.

More commentary. Slashdot thread.

from https://www.schneier.com/blog/

CIA’s Pandemic Toolkit

WikiLeaks is still dumping CIA cyberweapons on the Internet. Its latest dump is something called "Pandemic": The Pandemic leak does not explain what the CIA’s initial infection vector is, but does describe it as a persistent implant. "As the name suggests, a single computer on a local network with shared drives that is infected with the ‘Pandemic’ implant will act…

WikiLeaks is still dumping CIA cyberweapons on the Internet. Its latest dump is something called "Pandemic":

The Pandemic leak does not explain what the CIA's initial infection vector is, but does describe it as a persistent implant.

"As the name suggests, a single computer on a local network with shared drives that is infected with the 'Pandemic' implant will act like a 'Patient Zero' in the spread of a disease," WikiLeaks said in its summary description. "'Pandemic' targets remote users by replacing application code on-the-fly with a Trojaned version if the program is retrieved from the infected machine."

The key to evading detection is its ability to modify or replace requested files in transit, hiding its activity by never touching the original file. The new attack then executes only on the machine requesting the file.

Version 1.1 of Pandemic, according to the CIA's documentation, can target and replace up to 20 different files with a maximum size of 800MB for a single replacement file.

"It will infect remote computers if the user executes programs stored on the pandemic file server," WikiLeaks said. "Although not explicitly stated in the documents, it seems technically feasible that remote computers that provide file shares themselves become new pandemic file servers on the local network to reach new targets."

The CIA describes Pandemic as a tool that runs as kernel shellcode that installs a file system filter driver. The driver is used to replace a file with a payload when a user on the local network accesses the file over SMB.

WikiLeaks page. News article.

from https://www.schneier.com/blog/

WannaCry and Vulnerabilities

There is plenty of blame to go around for the WannaCry ransomware that spread throughout the Internet earlier this month, disrupting work at hospitals, factories, businesses, and universities. First, there are the writers of the malicious software, which blocks victims’ access to their computers until they pay a fee. Then there are the users who didn’t install the Windows security…

There is plenty of blame to go around for the WannaCry ransomware that spread throughout the Internet earlier this month, disrupting work at hospitals, factories, businesses, and universities. First, there are the writers of the malicious software, which blocks victims' access to their computers until they pay a fee. Then there are the users who didn't install the Windows security patch that would have prevented an attack. A small portion of the blame falls on Microsoft, which wrote the insecure code in the first place. One could certainly condemn the Shadow Brokers, a group of hackers with links to Russia who stole and published the National Security Agency attack tools that included the exploit code used in the ransomware. But before all of this, there was the NSA, which found the vulnerability years ago and decided to exploit it rather than disclose it.

All software contains bugs or errors in the code. Some of these bugs have security implications, granting an attacker unauthorized access to or control of a computer. These vulnerabilities are rampant in the software we all use. A piece of software as large and complex as Microsoft Windows will contain hundreds of them, maybe more. These vulnerabilities have obvious criminal uses that can be neutralized if patched. Modern software is patched all the time -- either on a fixed schedule, such as once a month with Microsoft, or whenever required, as with the Chrome browser.

When the US government discovers a vulnerability in a piece of software, however, it decides between two competing equities. It can keep it secret and use it offensively, to gather foreign intelligence, help execute search warrants, or deliver malware. Or it can alert the software vendor and see that the vulnerability is patched, protecting the country -- and, for that matter, the world -- from similar attacks by foreign governments and cybercriminals. It's an either-or choice. As former US Assistant Attorney General Jack Goldsmith has said, "Every offensive weapon is a (potential) chink in our defense -- and vice versa."

This is all well-trod ground, and in 2010 the US government put in place an interagency Vulnerabilities Equities Process (VEP) to help balance the trade-off. The details are largely secret, but a 2014 blog post by then President Barack Obama's cybersecurity coordinator, Michael Daniel, laid out the criteria that the government uses to decide when to keep a software flaw undisclosed. The post's contents were unsurprising, listing questions such as "How much is the vulnerable system used in the core Internet infrastructure, in other critical infrastructure systems, in the US economy, and/or in national security systems?" and "Does the vulnerability, if left unpatched, impose significant risk?" They were balanced by questions like "How badly do we need the intelligence we think we can get from exploiting the vulnerability?" Elsewhere, Daniel has noted that the US government discloses to vendors the "overwhelming majority" of the vulnerabilities that it discovers -- 91 percent, according to NSA Director Michael S. Rogers.

The particular vulnerability in WannaCry is code-named EternalBlue, and it was discovered by the US government -- most likely the NSA -- sometime before 2014. The Washington Post reported both how useful the bug was for attack and how much the NSA worried about it being used by others. It was a reasonable concern: many of our national security and critical infrastructure systems contain the vulnerable software, which imposed significant risk if left unpatched. And yet it was left unpatched.

There's a lot we don't know about the VEP. The Washington Post says that the NSA used EternalBlue "for more than five years," which implies that it was discovered after the 2010 process was put in place. It's not clear if all vulnerabilities are given such consideration, or if bugs are periodically reviewed to determine if they should be disclosed. That said, any VEP that allows something as dangerous as EternalBlue -- or the Cisco vulnerabilities that the Shadow Brokers leaked last August to remain unpatched for years isn't serving national security very well. As a former NSA employee said, the quality of intelligence that could be gathered was "unreal." But so was the potential damage. The NSA must avoid hoarding vulnerabilities.

Perhaps the NSA thought that no one else would discover EternalBlue. That's another one of Daniel's criteria: "How likely is it that someone else will discover the vulnerability?" This is often referred to as NOBUS, short for "nobody but us." Can the NSA discover vulnerabilities that no one else will? Or are vulnerabilities discovered by one intelligence agency likely to be discovered by another, or by cybercriminals?

In the past few months, the tech community has acquired some data about this question. In one study, two colleagues from Harvard and I examined over 4,300 disclosed vulnerabilities in common software and concluded that 15 to 20 percent of them are rediscovered within a year. Separately, researchers at the Rand Corporation looked at a different and much smaller data set and concluded that fewer than six percent of vulnerabilities are rediscovered within a year. The questions the two papers ask are slightly different and the results are not directly comparable (we'll both be discussing these results in more detail at the Black Hat Conference in July), but clearly, more research is needed.

People inside the NSA are quick to discount these studies, saying that the data don't reflect their reality. They claim that there are entire classes of vulnerabilities the NSA uses that are not known in the research world, making rediscovery less likely. This may be true, but the evidence we have from the Shadow Brokers is that the vulnerabilities that the NSA keeps secret aren't consistently different from those that researchers discover. And given the alarming ease with which both the NSA and CIA are having their attack tools stolen, rediscovery isn't limited to independent security research.

But even if it is difficult to make definitive statements about vulnerability rediscovery, it is clear that vulnerabilities are plentiful. Any vulnerabilities that are discovered and used for offense should only remain secret for as short a time as possible. I have proposed six months, with the right to appeal for another six months in exceptional circumstances. The United States should satisfy its offensive requirements through a steady stream of newly discovered vulnerabilities that, when fixed, also improve the country's defense.

The VEP needs to be reformed and strengthened as well. A report from last year by Ari Schwartz and Rob Knake, who both previously worked on cybersecurity policy at the White House National Security Council, makes some good suggestions on how to further formalize the process, increase its transparency and oversight, and ensure periodic review of the vulnerabilities that are kept secret and used for offense. This is the least we can do. A bill recently introduced in both the Senate and the House calls for this and more.

In the case of EternalBlue, the VEP did have some positive effects. When the NSA realized that the Shadow Brokers had stolen the tool, it alerted Microsoft, which released a patch in March. This prevented a true disaster when the Shadow Brokers exposed the vulnerability on the Internet. It was only unpatched systems that were susceptible to WannaCry a month later, including versions of Windows so old that Microsoft normally didn't support them. Although the NSA must take its share of the responsibility, no matter how good the VEP is, or how many vulnerabilities the NSA reports and the vendors fix, security won't improve unless users download and install patches, and organizations take responsibility for keeping their software and systems up to date. That is one of the important lessons to be learned from WannaCry.

This essay originally appeared in Foreign Affairs.

from https://www.schneier.com/blog/