Hackers Threaten to Erase Apple Customer Data

Turkish hackers are threatening to erase millions of iCloud user accounts unless Apple pays a ransom. This is a weird story, and I’m skeptical of some of the details. Presumably Apple has decided that it’s smarter to spend the money on secure backups and other security measures than to pay the ransom. But we’ll see how this unfolds….

Turkish hackers are threatening to erase millions of iCloud user accounts unless Apple pays a ransom.

This is a weird story, and I'm skeptical of some of the details. Presumably Apple has decided that it's smarter to spend the money on secure backups and other security measures than to pay the ransom. But we'll see how this unfolds.

from https://www.schneier.com/blog/

IoT Teddy Bear Leaked Personal Audio Recordings

CloudPets are an Internet-connected stuffed animals that allow children and parents to send each other voice messages. Last week, we learned that Spiral Toys had such poor security that it exposed 800,000 customer credentials, and two million audio recordings. As we’ve seen time and time again in the last couple of years, so-called "smart" devices connected to the internet­ –…

CloudPets are an Internet-connected stuffed animals that allow children and parents to send each other voice messages. Last week, we learned that Spiral Toys had such poor security that it exposed 800,000 customer credentials, and two million audio recordings.

As we've seen time and time again in the last couple of years, so-called "smart" devices connected to the internet­ -- what is popularly known as the Internet of Things or IoT­ -- are often left insecure or are easily hackable, and often leak sensitive data. There will be a time when IoT developers and manufacturers learn the lesson and make secure by default devices, but that time hasn't come yet. So if you are a parent who doesn't want your loving messages with your kids leaked online, you might want to buy a good old fashioned teddy bear that doesn't connect to a remote, insecure server.

That's about right. This is me on that issue from 2014.

from https://www.schneier.com/blog/

Defense against Doxing

A decade ago, I wrote about the death of ephemeral conversation. As computers were becoming ubiquitous, some unintended changes happened, too. Before computers, what we said disappeared once we’d said it. Neither face-to-face conversations nor telephone conversations were routinely recorded. A permanent communication was something different and special; we called it correspondence. The Internet changed this. We now chat by…

A decade ago, I wrote about the death of ephemeral conversation. As computers were becoming ubiquitous, some unintended changes happened, too. Before computers, what we said disappeared once we'd said it. Neither face-to-face conversations nor telephone conversations were routinely recorded. A permanent communication was something different and special; we called it correspondence.

The Internet changed this. We now chat by text message and e-mail, on Facebook and on Instagram. These conversations -- with friends, lovers, colleagues, fellow employees -- all leave electronic trails. And while we know this intellectually, we haven't truly internalized it. We still think of conversation as ephemeral, forgetting that we're being recorded and what we say has the permanence of correspondence.

That our data is used by large companies for psychological manipulation ­-- we call this advertising --­ is well known. So is its use by governments for law enforcement and, depending on the country, social control. What made the news over the past year were demonstrations of how vulnerable all of this data is to hackers and the effects of having it hacked, copied, and then published online. We call this doxing.

Doxing isn't new, but it has become more common. It's been perpetrated against corporations, law firms, individuals, the NSA and -- just this week -- the CIA. It's largely harassment and not whistleblowing, and it's not going to change anytime soon. The data in your computer and in the cloud are, and will continue to be, vulnerable to hacking and publishing online. Depending on your prominence and the details of this data, you may need some new strategies to secure your private life.

There are two basic ways hackers can get at your e-mail and private documents. One way is to guess your password. That's how hackers got their hands on personal photos of celebrities from iCloud in 2014.

How to protect yourself from this attack is pretty obvious. First, don't choose a guessable password. This is more than not using "password1" or "qwerty"; most easily memorizable passwords are guessable. My advice is to generate passwords you have to remember by using either the XKCD scheme or the Schneier scheme, and to use large random passwords stored in a password manager for everything else.

Second, turn on two-factor authentication where you can, like Google's 2-Step Verification. This adds another step besides just entering a password, such as having to type in a one-time code that's sent to your mobile phone. And third, don't reuse the same password on any sites you actually care about.

You're not done, though. Hackers have accessed accounts by exploiting the "secret question" feature and resetting the password. That was how Sarah Palin's e-mail account was hacked in 2008. The problem with secret questions is that they're not very secret and not very random. My advice is to refuse to use those features. Type randomness into your keyboard, or choose a really random answer and store it in your password manager.

Finally, you also have to stay alert to phishing attacks, where a hacker sends you an enticing e-mail with a link that sends you to a web page that looks almost like the expected page, but which actually isn't. This sort of thing can bypass two-factor authentication, and is almost certainly what tricked John Podesta and Colin Powell.

The other way hackers can get at your personal stuff is by breaking in to the computers the information is stored on. This is how the Russians got into the Democratic National Committee's network and how a lone hacker got into the Panamanian law firm Mossack Fonseca. Sometimes individuals are targeted, as when China hacked Google in 2010 to access the e-mail accounts of human rights activists. Sometimes the whole network is the target, and individuals are inadvertent victims, as when thousands of Sony employees had their e-mails published by North Korea in 2014.

Protecting yourself is difficult, because it often doesn't matter what you do. If your e-mail is stored with a service provider in the cloud, what matters is the security of that network and that provider. Most users have no control over that part of the system. The only way to truly protect yourself is to not keep your data in the cloud where someone could get to it. This is hard. We like the fact that all of our e-mail is stored on a server somewhere and that we can instantly search it. But that convenience comes with risk. Consider deleting old e-mail, or at least downloading it and storing it offline on a portable hard drive. In fact, storing data offline is one of the best things you can do to protect it from being hacked and exposed. If it's on your computer, what matters is the security of your operating system and network, not the security of your service provider.

Consider this for files on your own computer. The more things you can move offline, the safer you'll be.

E-mail, no matter how you store it, is vulnerable. If you're worried about your conversations becoming public, think about an encrypted chat program instead, such as Signal, WhatsApp or Off-the-Record Messaging. Consider using communications systems that don't save everything by default.

None of this is perfect, of course. Portable hard drives are vulnerable when you connect them to your computer. There are ways to jump air gaps and access data on computers not connected to the Internet. Communications and data files you delete might still exist in backup systems somewhere -- either yours or those of the various cloud providers you're using. And always remember that there's always another copy of any of your conversations stored with the person you're conversing with. Even with these caveats, though, these measures will make a big difference.

When secrecy is truly paramount, go back to communications systems that are still ephemeral. Pick up the telephone and talk. Meet face to face. We don't yet live in a world where everything is recorded and everything is saved, although that era is coming. Enjoy the last vestiges of ephemeral conversation while you still can.

This essay originally appeared in the Washington Post.

from https://www.schneier.com/blog/

WikiLeaks Releases CIA Hacking Tools

WikiLeaks just released a cache of 8,761 classified CIA documents from 2012 to 2016, including details of its offensive Internet operations. I have not read through any of them yet. If you see something interesting, tell us in the comments. EDITED TO ADD: There’s a lot in here. Many of the hacking tools are redacted, with the tar files and…

WikiLeaks just released a cache of 8,761 classified CIA documents from 2012 to 2016, including details of its offensive Internet operations.

I have not read through any of them yet. If you see something interesting, tell us in the comments.

EDITED TO ADD: There's a lot in here. Many of the hacking tools are redacted, with the tar files and zip archives replaced with messages like:

::: THIS ARCHIVE FILE IS STILL BEING EXAMINED BY WIKILEAKS. :::
::: IT MAY BE RELEASED IN THE NEAR FUTURE. WHAT FOLLOWS IS :::
::: AN AUTOMATICALLY GENERATED LIST OF ITS CONTENTS: :::

Hopefully we'll get them eventually. The documents say that the CIA -- and other intelligence services -- can bypass Signal, WhatsApp and Telegram. It seems to be by hacking the end-user devices and grabbing the traffic before and after encryption, not by breaking the encryption.

New York Times article.

EDITED TO ADD: Some details from The Guardian:

According to the documents:

  • CIA hackers targeted smartphones and computers.
  • The Center for Cyber Intelligence is based at the CIA headquarters in Virginia but it has a second covert base in the US consulate in Frankfurt which covers Europe, the Middle East and Africa.
  • A programme called Weeping Angel describes how to attack a Samsung F8000 TV set so that it appears to be off but can still be used for monitoring.

I just noticed this from the WikiLeaks page:

Recently, the CIA lost control of the majority of its hacking arsenal including malware, viruses, trojans, weaponized "zero day" exploits, malware remote control systems and associated documentation. This extraordinary collection, which amounts to more than several hundred million lines of code, gives its possessor the entire hacking capacity of the CIA. The archive appears to have been circulated among former U.S. government hackers and contractors in an unauthorized manner, one of whom has provided WikiLeaks with portions of the archive.

So it sounds like this cache of documents wasn't taken from the CIA and given to WikiLeaks for publication, but has been passed around the community for a while -- and incidentally some part of the cache was passed to WikiLeaks. So there are more documents out there, and others may release them in unredacted form.

Wired article. Slashdot thread. Two articles from the Washington Post.

EDITED TO ADD: This document talks about Comodo version 5.X and version 6.X. Version 6 was released in Feb 2013. Version 7 was released in Apr 2014. This gives us a time window of that page, and the cache in general. (WikiLeaks says that the documents cover 2013 to 2016.)

If these tools are a few years out of date, it's similar to the NSA tools released by the "Shadow Brokers." Most of us thought the Shadow Brokers were the Russians, specifically releasing older NSA tools that had diminished value as secrets. Could this be the Russians as well?

EDITED TO ADD: Nicholas Weaver comments.

EDITED TO ADD (3/8): These documents are interesting:

The CIA's hand crafted hacking techniques pose a problem for the agency. Each technique it has created forms a "fingerprint" that can be used by forensic investigators to attribute multiple different attacks to the same entity.

This is analogous to finding the same distinctive knife wound on multiple separate murder victims. The unique wounding style creates suspicion that a single murderer is responsible. As soon one murder in the set is solved then the other murders also find likely attribution.

The CIA's Remote Devices Branch's UMBRAGE group collects and maintains a substantial library of attack techniques 'stolen' from malware produced in other states including the Russian Federation.

With UMBRAGE and related projects the CIA cannot only increase its total number of attack types but also misdirect attribution by leaving behind the "fingerprints" of the groups that the attack techniques were stolen from.

UMBRAGE components cover keyloggers, password collection, webcam capture, data destruction, persistence, privilege escalation, stealth, anti-virus (PSP) avoidance and survey techniques.

This is being spun in the press as the CIA is pretending to be Russia. I'm not convinced that the documents support these allegations. Can someone else look at the documents. I don't like my conclusion that WikiLeaks is using this document dump as a way to push their own bias.


from https://www.schneier.com/blog/

Jumping Air Gaps with Blinking Lights and Drones

Researchers have demonstrated how a malicious piece of software in an air-gapped computer can communicate with a nearby drone using a blinking LED on the computer. I have mixed feelings about research like this. On the one hand, it’s pretty cool. On the other hand, there’s not really anything new or novel, and it’s kind of a movie-plot threat. Research…

Researchers have demonstrated how a malicious piece of software in an air-gapped computer can communicate with a nearby drone using a blinking LED on the computer.

I have mixed feelings about research like this. On the one hand, it's pretty cool. On the other hand, there's not really anything new or novel, and it's kind of a movie-plot threat.

Research paper.

EDITED TO ADD (3/7): Here's a 2002 paper on this idea.

from https://www.schneier.com/blog/

Botnets

Botnets have existed for at least a decade. As early as 2000, hackers were breaking into computers over the Internet and controlling them en masse from centralized systems. Among other things, the hackers used the combined computing power of these botnets to launch distributed denial-of-service attacks, which flood websites with traffic to take them down. But now the problem is…

Botnets have existed for at least a decade. As early as 2000, hackers were breaking into computers over the Internet and controlling them en masse from centralized systems. Among other things, the hackers used the combined computing power of these botnets to launch distributed denial-of-service attacks, which flood websites with traffic to take them down.

But now the problem is getting worse, thanks to a flood of cheap webcams, digital video recorders, and other gadgets in the "Internet of things." Because these devices typically have little or no security, hackers can take them over with little effort. And that makes it easier than ever to build huge botnets that take down much more than one site at a time.

In October, a botnet made up of 100,000 compromised gadgets knocked an Internet infrastructure provider partially offline. Taking down that provider, Dyn, resulted in a cascade of effects that ultimately caused a long list of high-profile websites, including Twitter and Netflix, to temporarily disappear from the Internet. More attacks are sure to follow: the botnet that attacked Dyn was created with publicly available malware called Mirai that largely automates the process of co-opting computers.

The best defense would be for everything online to run only secure software, so botnets couldn't be created in the first place. This isn't going to happen anytime soon. Internet of things devices are not designed with security in mind and often have no way of being patched. The things that have become part of Mirai botnets, for example, will be vulnerable until their owners throw them away. Botnets will get larger and more powerful simply because the number of vulnerable devices will go up by orders of magnitude over the next few years.

What do hackers do with them? Many things.

Botnets are used to commit click fraud. Click fraud is a scheme to fool advertisers into thinking that people are clicking on, or viewing, their ads. There are lots of ways to commit click fraud, but the easiest is probably for the attacker to embed a Google ad in a Web page he owns. Google ads pay a site owner according to the number of people who click on them. The attacker instructs all the computers on his botnet to repeatedly visit the Web page and click on the ad. Dot, dot, dot, PROFIT! If the botnet makers figure out more effective ways to siphon revenue from big companies online, we could see the whole advertising model of the Internet crumble.

Similarly, botnets can be used to evade spam filters, which work partly by knowing which computers are sending millions of e-mails. They can speed up password guessing to break into online accounts, mine bitcoins, and do anything else that requires a large network of computers. This is why botnets are big businesses. Criminal organizations rent time on them.

But the botnet activities that most often make headlines are denial-of-service attacks. Dyn seems to have been the victim of some angry hackers, but more financially motivated groups use these attacks as a form of extortion. Political groups use them to silence websites they don't like. Such attacks will certainly be a tactic in any future cyberwar.

Once you know a botnet exists, you can attack its command-and-control system. When botnets were rare, this tactic was effective. As they get more common, this piecemeal defense will become less so. You can also secure yourself against the effects of botnets. For example, several companies sell defenses against denial-of-service attacks. Their effectiveness varies, depending on the severity of the attack and the type of service.

But overall, the trends favor the attacker. Expect more attacks like the one against Dyn in the coming year.

This essay previously appeared in the MIT Technology Review.

from https://www.schneier.com/blog/

Adm. Rogers Talks about Buying Cyberweapons

At a talk last week, the head of US Cyber Command and the NSA Mike Rogers talked about the US buying cyberweapons from arms manufacturers. "In the application of kinetic functionality — weapons — we go to the private sector and say, ‘Build this thing we call a [joint directed-attack munition], a [Tomahawk land-attack munition].’ Fill in the blank," he…

At a talk last week, the head of US Cyber Command and the NSA Mike Rogers talked about the US buying cyberweapons from arms manufacturers.

"In the application of kinetic functionality -- weapons -- we go to the private sector and say, 'Build this thing we call a [joint directed-attack munition], a [Tomahawk land-attack munition].' Fill in the blank," he said.

"On the offensive side, to date, we have done almost all of our weapons development internally. And part of me goes -- five to ten years from now is that a long-term sustainable model? Does that enable you to access fully the capabilities resident in the private sector? I'm still trying to work my way through that, intellectually."

Businesses already flog exploits, security vulnerability details, spyware, and similar stuff to US intelligence agencies, and Rogers is clearly considering stepping that trade up a notch.

Already, Third World countries are buying from cyberweapons arms manufacturers. My guess is that he's right and the US will be doing that in the future, too.

from https://www.schneier.com/blog/