NSA Best Scientific Cybersecurity Paper Competition

Every year, the NSA has a competition for the best cybersecurity paper. Winners get to go to the NSA to pick up the award. (Warning: you will almost certainly be fingerprinted while you’re there.) Submission guidelines and nomination page….

Every year, the NSA has a competition for the best cybersecurity paper. Winners get to go to the NSA to pick up the award. (Warning: you will almost certainly be fingerprinted while you're there.)

Submission guidelines and nomination page.

from https://www.schneier.com/blog/

New Paper on Encryption Workarounds

I have written a paper with Orin Kerr on encryption workarounds. Our goal wasn’t to make any policy recommendations. (That was a good thing, since we probably don’t agree on any.) Our goal was to present a taxonomy of different workarounds, and discuss their technical and legal characteristics and complications. Abstract: The widespread use of encryption has triggered a new…

I have written a paper with Orin Kerr on encryption workarounds. Our goal wasn't to make any policy recommendations. (That was a good thing, since we probably don't agree on any.) Our goal was to present a taxonomy of different workarounds, and discuss their technical and legal characteristics and complications.

Abstract: The widespread use of encryption has triggered a new step in many criminal investigations: the encryption workaround. We define an encryption workaround as any lawful government effort to reveal an unencrypted version of a target's data that has been concealed by encryption. This essay provides an overview of encryption workarounds. It begins with a taxonomy of the different ways investigators might try to bypass encryption schemes. We classify six kinds of workarounds: find the key, guess the key, compel the key, exploit a flaw in the encryption software, access plaintext while the device is in use, and locate another plaintext copy. For each approach, we consider the practical, technological, and legal hurdles raised by its use.

The remainder of the essay develops lessons about encryption workarounds and the broader public debate about encryption in criminal investigations. First, encryption workarounds are inherently probabilistic. None work every time, and none can be categorically ruled out every time. Second, the different resources required for different workarounds will have significant distributional effects on law enforcement. Some techniques are inexpensive and can be used often by many law enforcement agencies; some are sophisticated or expensive and likely to be used rarely and only by a few. Third, the scope of legal authority to compel third-party assistance will be a continuing challenge. And fourth, the law governing encryption workarounds remains uncertain and underdeveloped. Whether encryption will be a game-changer or a speed bump depends on both technological change and the resolution of important legal questions that currently remain unanswered.

The paper is finished, but we'll be revising it once more before final publication. Comments are appreciated.

from https://www.schneier.com/blog/

Security Vulnerabilities in Mobile MAC Randomization

Interesting research: "A Study of MAC Address Randomization in Mobile Devices When it Fails": Abstract: Media Access Control (MAC) address randomization is a privacy technique whereby mobile devices rotate through random hardware addresses in order to prevent observers from singling out their traffic or physical location from other nearby devices. Adoption of this technology, however, has been sporadic and varied…

Interesting research: "A Study of MAC Address Randomization in Mobile Devices When it Fails":

Abstract: Media Access Control (MAC) address randomization is a privacy technique whereby mobile devices rotate through random hardware addresses in order to prevent observers from singling out their traffic or physical location from other nearby devices. Adoption of this technology, however, has been sporadic and varied across device manufacturers. In this paper, we present the first wide-scale study of MAC address randomization in the wild, including a detailed breakdown of different randomization techniques by operating system, manufacturer, and model of device. We then identify multiple flaws in these implementations which can be exploited to defeat randomization as performed by existing devices. First, we show that devices commonly make improper use of randomization by sending wireless frames with the true, global address when they should be using a randomized address. We move on to extend the passive identification techniques of Vanhoef et al. to effectively defeat randomization in 96% of Android phones. Finally, we show a method that can be used to track 100% of devices using randomization, regardless of manufacturer, by exploiting a previously unknown flaw in the way existing wireless chipsets handle low-level control frames.

Basically, iOS and Android phones are not very good at randomizing their MAC addresses. And tricks with level-2 control frames can exploit weaknesses in their chipsets.

Slashdot post.

from https://www.schneier.com/blog/

Using Intel’s SGX to Attack Itself

Researchers have demonstrated using Intel’s Software Guard Extensions to hide malware and steal cryptographic keys from inside SGX’s protected enclave: Malware Guard Extension: Using SGX to Conceal Cache Attacks Abstract:In modern computer systems, user processes are isolated from each other by the operating system and the hardware. Additionally, in a cloud scenario it is crucial that the hypervisor isolates tenants…

Researchers have demonstrated using Intel's Software Guard Extensions to hide malware and steal cryptographic keys from inside SGX's protected enclave:

Malware Guard Extension: Using SGX to Conceal Cache Attacks

Abstract:In modern computer systems, user processes are isolated from each other by the operating system and the hardware. Additionally, in a cloud scenario it is crucial that the hypervisor isolates tenants from other tenants that are co-located on the same physical machine. However, the hypervisor does not protect tenants against the cloud provider and thus the supplied operating system and hardware. Intel SGX provides a mechanism that addresses this scenario. It aims at protecting user-level software from attacks from other processes, the operating system, and even physical attackers.

In this paper, we demonstrate fine-grained software-based side-channel attacks from a malicious SGX enclave targeting co-located enclaves. Our attack is the first malware running on real SGX hardware, abusing SGX protection features to conceal itself. Furthermore, we demonstrate our attack both in a native environment and across multiple Docker containers. We perform a Prime+Probe cache side-channel attack on a co-located SGX enclave running an up-to-date RSA implementation that uses a constant-time multiplication primitive. The attack works although in SGX enclaves there are no timers, no large pages, no physical addresses, and no shared memory. In a semi-synchronous attack, we extract 96% of an RSA private key from a single trace. We extract the full RSA private key in an automated attack from 11 traces within 5 minutes.

News article.

from https://www.schneier.com/blog/

Friday Squid Blogging: When Squid Evolved

Squid evolved during an "evolutionary war" — the Mesozoic Marine Revolution — about 100 million years ago. Research paper. As usual, you can also use this squid post to talk about the security stories in the news that I haven’t covered….

Squid evolved during an "evolutionary war" -- the Mesozoic Marine Revolution -- about 100 million years ago.

Research paper.

As usual, you can also use this squid post to talk about the security stories in the news that I haven't covered.

from https://www.schneier.com/blog/

Jumping Air Gaps with Blinking Lights and Drones

Researchers have demonstrated how a malicious piece of software in an air-gapped computer can communicate with a nearby drone using a blinking LED on the computer. I have mixed feelings about research like this. On the one hand, it’s pretty cool. On the other hand, there’s not really anything new or novel, and it’s kind of a movie-plot threat. Research…

Researchers have demonstrated how a malicious piece of software in an air-gapped computer can communicate with a nearby drone using a blinking LED on the computer.

I have mixed feelings about research like this. On the one hand, it's pretty cool. On the other hand, there's not really anything new or novel, and it's kind of a movie-plot threat.

Research paper.

EDITED TO ADD (3/7): Here's a 2002 paper on this idea.

from https://www.schneier.com/blog/

Friday Squid Blogging: The Strawberry Squid’s Lopsided Eyes

The evolutionary reasons why the strawberry squid has two different eyes. Additional articles. Original paper. As usual, you can also use this squid post to talk about the security stories in the news that I haven’t covered….

The evolutionary reasons why the strawberry squid has two different eyes. Additional articles.

Original paper.

As usual, you can also use this squid post to talk about the security stories in the news that I haven't covered.

from https://www.schneier.com/blog/

Research into the Root Causes of Terrorism

Interesting article in Science discussing field research on how people are radicalized to become terrorists. The potential for research that can overcome existing constraints can be seen in recent advances in understanding violent extremism and, partly, in interdiction and prevention. Most notable is waning interest in simplistic root-cause explanations of why individuals become violent extremists (e.g., poverty, lack of education,…

Interesting article in Science discussing field research on how people are radicalized to become terrorists.

The potential for research that can overcome existing constraints can be seen in recent advances in understanding violent extremism and, partly, in interdiction and prevention. Most notable is waning interest in simplistic root-cause explanations of why individuals become violent extremists (e.g., poverty, lack of education, marginalization, foreign occupation, and religious fervor), which cannot accommodate the richness and diversity of situations that breed terrorism or support meaningful interventions. A more tractable line of inquiry is how people actually become involved in terror networks (e.g., how they radicalize and are recruited, move to action, or come to abandon cause and comrades).

Reports from the The Soufan Group, International Center for the Study of Radicalisation (King's College London), and the Combating Terrorism Center (U.S. Military Academy) indicate that approximately three-fourths of those who join the Islamic State or al-Qaeda do so in groups. These groups often involve preexisting social networks and typically cluster in particular towns and neighborhoods.. This suggests that much recruitment does not need direct personal appeals by organization agents or individual exposure to social media (which would entail a more dispersed recruitment pattern). Fieldwork is needed to identify the specific conditions under which these processes play out. Natural growth models of terrorist networks then might be based on an epidemiology of radical ideas in host social networks rather than built in the abstract then fitted to data and would allow for a public health, rather than strictly criminal, approach to violent extremism.

Such considerations have implications for countering terrorist recruitment. The present USG focus is on "counternarratives," intended as alternative to the "ideologies" held to motivate terrorists. This strategy treats ideas as disembodied from the human conditions in which they are embedded and given life as animators of social groups. In their stead, research and policy might better focus on personalized "counterengagement," addressing and harnessing the fellowship, passion, and purpose of people within specific social contexts, as ISIS and al-Qaeda often do. This focus stands in sharp contrast to reliance on negative mass messaging and sting operations to dissuade young people in doubt through entrapment and punishment (the most common practice used in U.S. law enforcement) rather than through positive persuasion and channeling into productive life paths. At the very least, we need field research in communities that is capable of capturing evidence to reveal which strategies are working, failing, or backfiring.

from https://www.schneier.com/blog/

Hacking Back

There’s a really interesting paper from George Washington University on hacking back: "Into the Gray Zone: The Private Sector and Active Defense against Cyber Threats." I’ve never been a fan of hacking back. There’s a reason we no longer issue letters of marque or allow private entities to commit crimes, and hacking back is a form a vigilante justice. But…

There's a really interesting paper from George Washington University on hacking back: "Into the Gray Zone: The Private Sector and Active Defense against Cyber Threats."

I've never been a fan of hacking back. There's a reason we no longer issue letters of marque or allow private entities to commit crimes, and hacking back is a form a vigilante justice. But the paper makes a lot of good points.

Here are three older papers on the topic.

from https://www.schneier.com/blog/